Math 403 Chapter 4: Cyclic Groups

1. Introduction: The simplest type of group (where the word "type" doesn't have a clear meaning just yet) is a cyclic group.
2. Definition: A group G is cyclic if there is some $g \in G$ with $G=\langle g\rangle$. Here g is a generator of the group G. Recall that $\langle g\rangle$ means all "powers" of g which can mean addition if that's the operation.
(a) Example: \mathbb{Z}_{6} is cyclic with generator 1. Are there other generators?
(b) Example: \mathbb{Z}_{n} is cyclic with generator 1.
(c) Example: \mathbb{Z} is cyclic with generator 1.
(d) Example: \mathbb{R}^{*} is not cyclic.
(e) Example: $U(10)$ is cylic with generator 3.
3. Important Note: Given any group G at all and any $g \in G$ we know that $\langle g\rangle$ is a cyclic subgroup of G and hence any statements about cyclic groups applies to any $\langle g\rangle$.

4. Properties Related to Cyclic Groups Part 1:

(a) Intuition: If $|g|=10$ then $\langle g\rangle=\left\{1, g, g^{2}, \ldots, g^{9}\right\}$ and the elements cycle back again. For example we have $g^{2}=g^{12}$ and in general $g^{i}=g^{j}$ iff $10 \mid(i-j)$.
(b) Theorem: Let G be a group and $g \in G$.

- If $|g|=\infty$ then $g^{i}=g^{j}$ iff $i=j$.
- if $|g|=n$ then $\langle g\rangle=\left\{1, g, g^{2},,,, . g^{n-1}\right\}$ and $g^{i}=g^{j}$ iff $n \mid(i-j)$.

Proof: If $|g|=\infty$ then by definition we never have $g^{i}=e$ unless $i=0$. Thus $g^{i}=g^{j}$ iff $g^{i-j}=e$ iff $i-j=0$.
If $|g|=n<\infty$ first note that $\langle g\rangle$ certainly includes $\left\{1, g, g^{2}, g^{n-1}\right\}$. Suppose $g^{k} \in\langle g\rangle$. Write $k=q n+r$ with $0 \leq r<n$ and then $g^{k}=\left(g^{n}\right)^{q} g^{r}=e^{q} g^{r}=g^{r}$ so g^{k} is one of those elements.
Now for the iff. If $g^{i}=g^{j}$ then $g^{i-j}=e$. Write $i-j=q n+r$ with $0 \leq r<n$. Then $e=g^{q n} g^{r}=g^{r}$. Since n (the order) is the least positive but $r<n$ we must have $r=0$ and so $n \mid(i-j)$.
If $n \mid(i-j)$ then $i-j=q n$ and then $g^{i}=g^{j} g^{q n}=g^{j} . \quad \mathcal{Q E D}$
(c) Corollary: For any $g \in G$ we have $|g|=|\langle g\rangle|$.

Proof: Follows directly.
$\mathcal{Q E D}$
(d) Corollary: For any $g \in G$ with $|g|=n, g^{i}=e$ iff $n \mid i$.

Proof: This is the theorem with $j=0$.
Example: If $|g|=10$ then if $g^{i}=e$ then $10 \mid i$, meaning we only get e when the powers are multiples of 10 .

5. Properties Related to Cyclic Groups Part 2:

(a) Intuition: If $|g|=30$ then if we examine something like $\left\langle g^{24}\right\rangle$ we find:

$$
\begin{aligned}
g^{24} & =g^{24} \\
\left(g^{24}\right)^{2} & =g^{48}=g^{18} \\
\left(g^{24}\right)^{3} & =g^{72}=g^{12} \\
\left(g^{24}\right)^{4} & =g^{96}=g^{6} \\
\left(g^{24}\right)^{5} & =g^{120}=g^{0}=e
\end{aligned}
$$

We then see that $\left\langle g^{24}\right\rangle=\left\{e, g^{6}, g^{12}, g^{18}, g^{24}\right\}=\left\langle g^{6}\right\rangle$. which is a bit nicer since the 6 is easier to work with. Note that $6=\operatorname{gcd}(30,24)$.
Likewise we can easily compute the order of g^{24}. We see it cycles every 5 , just like g^{6}, and $5=30 / \operatorname{gcd}(30,24)$.
(b) Theorem: Let $g \in G$ with $|g|=n$ and let $k \in \mathbb{Z}^{+}$then
(i) $\left\langle g^{k}\right\rangle=\left\langle g^{\operatorname{gcd}(n, k)}\right\rangle$
(ii) $\left|g^{k}\right|=\left|g^{\operatorname{gcd}(n, k)}\right|$
(iii) $\left|g^{k}\right|=n / \operatorname{gcd}(n, k)$

Proof: For (i) since $\operatorname{gcd}(n, k) \mid k$ we know that $\alpha \operatorname{gcd}(n, k)=k$ and so

$$
g^{k}=\left(g^{\operatorname{gcd}(n, k)}\right)^{\alpha} \in\left\langle g^{\operatorname{gcd}(n, k)}\right\rangle
$$

and so:

$$
\left\langle g^{k}\right\rangle \subseteq\left\langle g^{\operatorname{gcd}(n, k)}\right\rangle
$$

Then write $\operatorname{gcd}(n, k)=\alpha n+\beta k$ and observe that

$$
g^{\operatorname{gcd}(n, k)}=\left(g^{n}\right)^{\alpha}+\left(g^{k}\right)^{\beta}=\left(g^{k}\right)^{\beta} \in\left\langle g^{k}\right\rangle
$$

so that

$$
\left\langle g^{\operatorname{gcd}(n, k)}\right\rangle \subseteq\left\langle g^{k}\right\rangle
$$

Thus the two are equal.
Then (ii) follows immediately from the previous theorem.
For (iii) first observe that

$$
\left(g^{\operatorname{gcd}(n, k)}\right)^{n / \operatorname{gcd}(n, k)}=g^{n}=e
$$

so that:

$$
\left|g^{\operatorname{gcd}(n, k)}\right| \leq \frac{n}{\operatorname{gcd}(n, k)}
$$

On the other hand if we had $\left|g^{\operatorname{gcd}(n, k)}\right|=b<n / \operatorname{gcd}(n, k)$ then we have $e=\left(g^{\operatorname{gcd}(n, k)}\right)^{b}=$ $g^{b \operatorname{gcd}(n, k)}$ with $b \operatorname{gcd}(n, k)<n$, contradicting $|g|=n$. Thus we have:

$$
\left|g^{\operatorname{gcd}(n, k)}\right|=\frac{n}{\operatorname{gcd}(n, k)}
$$

Thus we have:

$$
\left|g^{k}\right|=\left|g^{\operatorname{gcd}(n, k)}\right|=\frac{n}{\operatorname{gcd}(n, k)}
$$

(c) Corollary: In a finite cyclic group the order of an element divides the order of a group. Proof: Follows since every element looks like g^{k} and we have $\left|g^{k}\right| \operatorname{gcd}(n, k)=n$. $\quad \mathcal{Q E D}$ Example: In a cyclic group of order 200 the order of every element must divide 200. In such a group an element could not have order 17, for example.
(d) Corollary: Suppose $g \in G$ and $|g|=n<\infty$. Then:

$$
\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle \text { iff } \operatorname{gcd}(n, i)=\operatorname{gcd}(n, j) \text { iff }\left|a^{i}\right|=\left|a^{j}\right|
$$

Proof: Follows immediately.
$\mathcal{Q E D}$
Example: If $|g|=18$ then the fact that $\operatorname{gcd}(18,12)=6=\operatorname{gcd}(18,6)$ guarantees that $\left|g^{12}\right|=\left|g^{6}\right|$.
(e) Corollary: Suppose $g \in G$ and $|g|=n<\infty$. Then:

$$
\langle a\rangle=\left\langle a^{j}\right\rangle \text { iff } \operatorname{gcd}(n, j)=1 \text { iff }|a|=\left|a^{j}\right|
$$

Proof: Follows immediately.
Example: If $|g|=32$ then the fact that $\operatorname{gcd}(15,32)=1$ guarantees that $\left\langle g^{15}\right\rangle=\langle g\rangle$, meaning g^{15} is a generator of $\langle g\rangle$.
(f) Corollary: An integer $k \in \mathbb{Z}_{n}$ is a generator of \mathbb{Z}_{n} iff $\operatorname{gcd}(n, k)=1$.

Proof: Follows immediately.
Example: The generators of \mathbb{Z}_{10} are $1,3,7,9$.

6. Classification of Subgroups of Cyclic Groups:

(a) Theorem (Fundamental Theorem of Cyclic Groups):

Suppose $G=\langle g\rangle$ is cyclic.
(i) Every subgroup of G is cyclic.
(ii) If $|G|=n$ then the order of any subgroup of G divides n.
(iii) If $|G|=n$ then for any $k \mid n$ there is exactly one subgroup of order k and if g generates G then $g^{n / k}$ generates that subgroup.
Proof:
(i) Let $H \leq G$. If $H=\{e\}$ then we're done so assume $H \neq\{e\}$. Choose $g^{m} \in H$ with minimal $m \in \mathbb{Z}^{+}$by well-ordering. Clearly $\left\langle g^{m}\right\rangle \subseteq H$. If some $g^{k} \in H$ then put $k=q m+r$ with $0 \leq r<m$ so $r=k-q m$ and then $g^{r}=g^{k}\left(g^{m}\right)^{-q} \in H$ and so $r=0$ by minimality of m and so $g^{k}=\left(g^{m}\right)^{q}$ and hence $g^{k} \in\left\langle g^{m}\right\rangle$.
(ii) Take a subgroup $H \leq G$. We know H is cyclic by (i) with $H=\left\langle g^{m}\right\rangle$ with minimal $m \in \mathbb{Z}^{+}$by well-ordering. Write $n=q m+r$ with $0 \leq r<m$ so $r=n-q m$ and then $g^{r}=g^{n}\left(g^{m}\right)^{-q} \in H$ and so $r=0$ by minimality of m and so $n=q m$ and then

$$
|H|=\left|\left\langle g^{m}\right\rangle\right|=\left|g^{m}\right|=\frac{n}{\operatorname{gcd}(n, m)}=\frac{n}{m}
$$

and so $m|H|=n$ and so $|H| \mid n$.
(iii) Observe first that for any $k \mid n$ we have

$$
\left|\left\langle g^{n / k}\right\rangle\right|=\left|g^{n / k}\right|=\frac{n}{\operatorname{gcd}(n, n / k)}=\frac{n}{n / k}=k
$$

Thus certainly $\left\langle g^{n / k}\right\rangle$ is a subgroup of order k. We must show that it is unique. Let $H \leq G$ with $|H|=k \mid n$. Since $H \leq G$ by (ii) we have $H=\left\langle g^{m}\right\rangle$ with $m \mid n$. Then we have:

$$
k=|H|=\left|\left\langle g^{m}\right\rangle\right|=\left|g^{m}\right|=\frac{n}{\operatorname{gcd}(n, m)}=\frac{n}{m}
$$

Thus $m=n / k$ and so $H=\left\langle g^{m}\right\rangle=\left\langle g^{n / k}\right\rangle$.
$\mathcal{Q E D}$
Example: This categorizes cyclic groups completely. For example suppose a cyclic group has order 20. Every subgroup is cyclic and there are unique subgroups of each order $1,2,4,5,10,20$. If G has generator g then generators of these subgroups can be chosen to be $g^{20 / 1}=g^{20}, g^{20 / 2}=g^{10}, g^{20 / 4}=g^{5}, g^{20 / 5}=g^{4}, g^{20 / 10}=g^{2}, g^{20 / 20}=g$ respectively.
(b) Corollary: For each positive divisor k of $n \in \mathbb{Z}^{+}$, the set $\langle n / k\rangle$ is the unique subgroup of \mathbb{Z}_{n} of order k. Moreover these are the only subgroups of \mathbb{Z}_{k}.
Proof: Follows immediately.
$\mathcal{Q E D}$
Example: In $\mathbb{Z}_{10}=\langle 1\rangle$ the subgroup $\langle 1\rangle$ is the unique subgroup of order $10 / 1=10$, the subgroup $\langle 2\rangle$ is the unique subgroup of order $10 / 2=5$, the subgroup $\langle 5\rangle$ is the unique subgroup of order $10 / 1=2$, the subgroup $\langle 10\rangle=\langle 0\rangle$ is the unique subgroup of order $10 / 10=1$.
(c) Definition: Define $\phi(1)=1$ and for any $n \in \mathbb{Z}$ with $n>1$ define $\phi(n)$ to be the number of positive integers less than n and coprime to n.
Example: We have $\phi(20)=8$ since $1,3,7,9,11,13,17,19$ are coprime.
(d) Theorem: Suppose G is cyclic of order n. If $d \mid n$ then there are $\phi(d)$ elements of order d in G.
Proof: Every element of order d generates a cyclic subgroup of order d but there is only one such cyclic subgroup, thus every element of order d is in that single cyclic subgroup of order d. If that cyclic subgroup is $\langle g\rangle$ with $|g|=d$ then note that the only elements of order d in it are those g^{k} with $\operatorname{gcd}(d, k)=1$ and there are $\phi(d)$ of those.
$\mathcal{Q E D}$
Example: In a cyclic group of order 100 noting that $20 \mid 100$ we then know there are $\phi(20)=8$ elements of order 20.
(e) Theorem: If G is a finite group then the number of elements of order d is a multiple of $\phi(d)$.
Outline of Proof: Elements of order d can be collected $\phi(d)$ at a time into subgroups of order d.
$\mathcal{Q E D}$
Example: If G is an arbitrary finite group then the number of elements of order 20 is a multiple of 8 . Keep in mind that this might be zero!

