- 1. **Introduction:** The simplest type of group (where the word "type" doesn't have a clear meaning just yet) is a cyclic group.
- 2. **Definition:** A group G is cyclic if there is some $g \in G$ with $G = \langle g \rangle$. Here g is a generator of the group G. Recall that $\langle g \rangle$ means all "powers" of g which can mean addition if that's the operation.
 - (a) **Example:** \mathbb{Z}_6 is cyclic with generator 1. Are there other generators?
 - (b) **Example:** \mathbb{Z}_n is cyclic with generator 1.
 - (c) **Example:** \mathbb{Z} is cyclic with generator 1.
 - (d) **Example:** \mathbb{R}^* is not cyclic.
 - (e) **Example:** U(10) is cylic with generator 3.
- 3. **Important Note:** Given any group G at all and any $g \in G$ we know that $\langle g \rangle$ is a cyclic subgroup of G and hence any statements about cyclic groups applies to any $\langle g \rangle$.
- 4. Properties Related to Cyclic Groups Part 1:
 - (a) **Intuition:** If |g| = 10 then $\langle g \rangle = \{1, g, g^2, ..., g^9\}$ and the elements cycle back again. For example we have $g^2 = g^{12}$ and in general $g^i = g^j$ iff $10 \mid (i j)$.
 - (b) **Theorem:** Let G be a group and $g \in G$.
 - If $|g| = \infty$ then $g^i = g^j$ iff i = j.
 - if |g| = n then $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ and $g^i = g^j$ iff $n \mid (i j)$.

Proof: If $|g| = \infty$ then by definition we never have $g^i = e$ unless i = 0. Thus $g^i = g^j$ iff $g^{i-j} = e$ iff i - j = 0.

If $|g| = n < \infty$ first note that $\langle g \rangle$ certainly includes $\{1, g, g^2, g^{n-1}\}$. Suppose $g^k \in \langle g \rangle$. Write k = qn + r with $0 \le r < n$ and then $g^k = (g^n)^q g^r = e^q g^r = g^r$ so g^k is one of those elements.

Now for the iff. If $g^i = g^j$ then $g^{i-j} = e$. Write i - j = qn + r with $0 \le r < n$. Then $e = g^{qn}g^r = g^r$. Since n (the order) is the least positive but r < n we must have r = 0 and so $n \mid (i - j)$.

If
$$n \mid (i-j)$$
 then $i-j=qn$ and then $g^i=g^jg^{qn}=g^j$. \mathcal{QED}

(c) Corollary: For any $g \in G$ we have $|g| = |\langle g \rangle|$.

Proof: Follows directly. \mathcal{QED}

(d) Corollary: For any $g \in G$ with |g| = n, $g^i = e$ iff $n \mid i$.

Proof: This is the theorem with j = 0. QED

Example: If |g| = 10 then if $g^i = e$ then $10 \mid i$, meaning we only get e when the powers are multiples of 10.

5. Properties Related to Cyclic Groups Part 2:

(a) **Intuition:** If |g| = 30 then if we examine something like $\langle g^{24} \rangle$ we find:

$$g^{24} = g^{24}$$

$$(g^{24})^2 = g^{48} = g^{18}$$

$$(g^{24})^3 = g^{72} = g^{12}$$

$$(g^{24})^4 = g^{96} = g^6$$

$$(g^{24})^5 = g^{120} = g^0 = e$$

We then see that $\langle g^{24} \rangle = \{e, g^6, g^{12}, g^{18}, g^{24}\} = \langle g^6 \rangle$. which is a bit nicer since the 6 is easier to work with. Note that $6 = \gcd(30, 24)$.

Likewise we can easily compute the order of g^{24} . We see it cycles every 5, just like g^6 , and $5 = 30/\gcd{(30, 24)}$.

- (b) **Theorem:** Let $g \in G$ with |g| = n and let $k \in \mathbb{Z}^+$ then
 - (i) $\langle g^k \rangle = \langle g^{\gcd(n,k)} \rangle$
 - (ii) $|g^k| = |g^{\gcd(n,k)}|$
 - (iii) $|g^k| = n/\gcd(n,k)$

Proof: For (i) since $gcd(n, k) \mid k$ we know that $\alpha gcd(n, k) = k$ and so

$$g^{k} = \left(g^{\gcd(n,k)}\right)^{\alpha} \in \left\langle g^{\gcd(n,k)} \right\rangle$$

and so:

$$\langle g^k \rangle \subseteq \left\langle g^{\gcd(n,k)} \right\rangle$$

Then write $gcd(n, k) = \alpha n + \beta k$ and observe that

$$g^{\gcd(n,k)} = (g^n)^{\alpha} + (g^k)^{\beta} = (g^k)^{\beta} \in \langle g^k \rangle$$

so that

$$\left\langle g^{\gcd(n,k)} \right\rangle \subseteq \left\langle g^k \right\rangle$$

Thus the two are equal.

Then (ii) follows immediately from the previous theorem.

For (iii) first observe that

$$(g^{\gcd(n,k)})^{n/\gcd(n,k)} = g^n = e$$

so that:

$$|g^{\gcd(n,k)}| \le \frac{n}{\gcd(n,k)}$$

On the other hand if we had $|g^{\gcd(n,k)}| = b < n/\gcd(n,k)$ then we have $e = (g^{\gcd(n,k)})^b = g^{\gcd(n,k)}$ with $b\gcd(n,k) < n$, contradicting |g| = n. Thus we have:

$$|g^{\gcd(n,k)}| = \frac{n}{\gcd(n,k)}$$

Thus we have:

$$|g^k| = \left| g^{\gcd(n,k)} \right| = \frac{n}{\gcd(n,k)}$$

- (c) Corollary: In a finite cyclic group the order of an element divides the order of a group. **Proof:** Follows since every element looks like g^k and we have $|g^k| \gcd(n, k) = n$. \mathcal{QED} **Example:** In a cyclic group of order 200 the order of every element must divide 200. In such a group an element could not have order 17, for example.
- (d) Corollary: Suppose $g \in G$ and $|g| = n < \infty$. Then:

$$\langle a^i \rangle = \langle a^j \rangle$$
 iff $gcd(n, i) = gcd(n, j)$ iff $|a^i| = |a^j|$

Proof: Follows immediately.

QED

Example: If |g| = 18 then the fact that gcd(18, 12) = 6 = gcd(18, 6) guarantees that $|g^{12}| = |g^6|$.

(e) Corollary: Suppose $g \in G$ and $|g| = n < \infty$. Then:

$$\langle a \rangle = \langle a^j \rangle$$
 iff $gcd(n, j) = 1$ iff $|a| = |a^j|$

Proof: Follows immediately.

QED

Example: If |g| = 32 then the fact that $\gcd(15, 32) = 1$ guarantees that $\langle g^{15} \rangle = \langle g \rangle$, meaning g^{15} is a generator of $\langle g \rangle$.

(f) Corollary: An integer $k \in \mathbb{Z}_n$ is a generator of \mathbb{Z}_n iff $\gcd(n, k) = 1$.

Proof: Follows immediately.

QED

Example: The generators of \mathbb{Z}_{10} are 1, 3, 7, 9.

6. Classification of Subgroups of Cyclic Groups:

(a) Theorem (Fundamental Theorem of Cyclic Groups):

Suppose $G = \langle g \rangle$ is cyclic.

- (i) Every subgroup of G is cyclic.
- (ii) If |G| = n then the order of any subgroup of G divides n.
- (iii) If |G| = n then for any $k \mid n$ there is exactly one subgroup of order k and if g generates G then $g^{n/k}$ generates that subgroup.

Proof:

- (i) Let $H \leq G$. If $H = \{e\}$ then we're done so assume $H \neq \{e\}$. Choose $g^m \in H$ with minimal $m \in \mathbb{Z}^+$ by well-ordering. Clearly $\langle g^m \rangle \subseteq H$. If some $g^k \in H$ then put k = qm + r with $0 \leq r < m$ so r = k qm and then $g^r = g^k(g^m)^{-q} \in H$ and so r = 0 by minimality of m and so $g^k = (g^m)^q$ and hence $g^k \in \langle g^m \rangle$.
- (ii) Take a subgroup $H \leq G$. We know H is cyclic by (i) with $H = \langle g^m \rangle$ with minimal $m \in \mathbb{Z}^+$ by well-ordering. Write n = qm + r with $0 \leq r < m$ so r = n qm and then $g^r = g^n(g^m)^{-q} \in H$ and so r = 0 by minimality of m and so n = qm and then

$$|H| = |\langle g^m \rangle| = |g^m| = \frac{n}{\gcd(n, m)} = \frac{n}{m}$$

and so m|H| = n and so $|H| \mid n$.

(iii) Observe first that for any $k \mid n$ we have

$$\left|\left\langle g^{n/k}\right\rangle\right| = \left|g^{n/k}\right| = \frac{n}{\gcd\left(n, n/k\right)} = \frac{n}{n/k} = k$$

Thus certainly $\langle g^{n/k} \rangle$ is a subgroup of order k. We must show that it is unique. Let $H \leq G$ with $|H| = k \mid n$. Since $H \leq G$ by (ii) we have $H = \langle g^m \rangle$ with $m \mid n$. Then we have:

$$k = |H| = |\langle g^m \rangle| = |g^m| = \frac{n}{\gcd(n, m)} = \frac{n}{m}$$

Thus m = n/k and so $H = \langle g^m \rangle = \langle g^{n/k} \rangle$.

OED

Example: This categorizes cyclic groups completely. For example suppose a cyclic group has order 20. Every subgroup is cyclic and there are unique subgroups of each order 1, 2, 4, 5, 10, 20. If G has generator g then generators of these subgroups can be chosen to be $g^{20/1} = g^{20}$, $g^{20/2} = g^{10}$, $g^{20/4} = g^5$, $g^{20/5} = g^4$, $g^{20/10} = g^2$, $g^{20/20} = g$ respectively.

(b) Corollary: For each positive divisor k of $n \in \mathbb{Z}^+$, the set $\langle n/k \rangle$ is the unique subgroup of \mathbb{Z}_n of order k. Moreover these are the only subgroups of \mathbb{Z}_k .

Proof: Follows immediately.

QED

Example: In $\mathbb{Z}_{10} = \langle 1 \rangle$ the subgroup $\langle 1 \rangle$ is the unique subgroup of order 10/1 = 10, the subgroup $\langle 2 \rangle$ is the unique subgroup of order 10/2 = 5, the subgroup $\langle 5 \rangle$ is the unique subgroup of order 10/1 = 2, the subgroup $\langle 10 \rangle = \langle 0 \rangle$ is the unique subgroup of order 10/10 = 1.

(c) **Definition:** Define $\phi(1) = 1$ and for any $n \in \mathbb{Z}$ with n > 1 define $\phi(n)$ to be the number of positive integers less than n and coprime to n.

Example: We have $\phi(20) = 8$ since 1, 3, 7, 9, 11, 13, 17, 19 are coprime.

(d) **Theorem:** Suppose G is cyclic of order n. If $d \mid n$ then there are $\phi(d)$ elements of order d in G.

Proof: Every element of order d generates a cyclic subgroup of order d but there is only one such cyclic subgroup, thus every element of order d is in that single cyclic subgroup of order d. If that cyclic subgroup is $\langle g \rangle$ with |g| = d then note that the only elements of order d in it are those g^k with $\gcd(d, k) = 1$ and there are $\phi(d)$ of those. \mathcal{QED}

Example: In a cyclic group of order 100 noting that $20 \mid 100$ we then know there are $\phi(20) = 8$ elements of order 20.

(e) **Theorem:** If G is a finite group then the number of elements of order d is a multiple of $\phi(d)$.

Outline of Proof: Elements of order d can be collected $\phi(d)$ at a time into subgroups of order d.

Example: If G is an arbitrary finite group then the number of elements of order 20 is a multiple of 8. Keep in mind that this might be zero!