Math 403 Chapter 4: Cyclic Groups

1. Introduction: The simplest type of group (where the word “type” doesn’t have a clear
meaning just yet) is a cyclic group.

2. Definition: A group G is cyclic if there is some g € G with G = (g). Here g is a generator
of the group G. Recall that (g) means all “powers” of g which can mean addition if that’s the
operation.

(a) Example: Zg is cyclic with generator 1. Are there other generators?

(b) Example: Z, is cyclic with generator 1.

(
(d

(e) Example: U(10) is cylic with generator 3.

)
)
¢) Example: Z is cyclic with generator 1.
) Example: R* is not cyclic.

)

3. Important Note: Given any group G at all and any g € G we know that (g) is a cyclic
subgroup of G and hence any statements about cyclic groups applies to any (g).

4. Properties Related to Cyclic Groups Part 1:

(a) Intuition: If [g| = 10 then (g) = {1,9,9% ..., ¢°} and the elements cycle back again. For
example we have g? = ¢g'2 and in general g* = ¢7 iff 10 | (i — 7).
(b) Theorem: Let G be a group and g € G.
o If |g| = oo then ¢¢ = ¢/ iff i = j.
o if [g| = n then (9) = {1,9,¢%,,,.9" '} and ¢’ = ¢’ iff n | (i — j).
Proof: If |g| = co then by definition we never have g¢ = e unless i = 0. Thus ¢g* = ¢ iff
g7 =ciffi—j=0.
If |g| = n < oo first note that (g) certainly includes {1, g, g% ¢""'}. Suppose ¢g* € (g).
Write k = qgn +r with 0 < r < n and then g* = (¢")%¢" = e%g" = g" so g* is one of those
elements.
Now for the iff. If g = ¢7 then ¢° 7 = e. Write i — j = gn + r with 0 < r < n. Then
e = ¢g%g" = g¢g". Since n (the order) is the least positive but r < n we must have r = 0
and so n | (i — j).

If n| (i —j) then i — j = qn and then g* = ¢g/g?" = g¢7. QED
(c) Corollary: For any g € G we have |g| = |{g)|-

Proof: Follows directly. QED
(d) Corollary: For any g € G with |g| =n, ¢g' = e iff n | .

Proof: This is the theorem with j = 0. QED

Example: If |g| = 10 then if g° = e then 10 | i, meaning we only get e when the powers
are multiples of 10.



5. Properties Related to Cyclic Groups Part 2:

(a) Intuition: If [g| = 30 then if we examine something like (g**) we find:

924 _ 924
(924)2 _ 48 _ 918
(924)3 _ g72 — 12
(924)4 _ 996 _ g6
(*)° =g =¢°

We then see that <gQ4> = {e, g% 9%, 98, 9%} = < > which is a bit nicer since the 6 is
easier to work with. Note that 6 = ged (30, 24).
Likewise we can easily compute the order of g2*. We see it cycles every 5, just like g9,
and 5 = 30/ged (30, 24).

(b) Theorem: Let g € G with |g| = n and let k € Z* then

(i) <gk> — <ggcd (n,k)>

(11) ’gk‘ _ ‘ggcd (n,k)‘

(iii) [g*| = n/ged (n, k)
Proof: For (i) since ged (n, k) | & we know that aged (n, k) = k and so

gk _ <ggcd (n,k))a c <ggcd (n,k)>

and so:
<gk> C <ggcd (n,k)>

Then write ged (n, k) = an + Bk and observe that

g=d ) = (gM)* 4 (gF)F = (g%)° € (¢¥)

<ggcd (n,k)> C <gk>

so that

Thus the two are equal.
Then (ii) follows immediately from the previous theorem.
For (iii) first observe that

(ggcd (n,k))n/gcd (n,k) _ gn —e
so that:

god (n,k)| < n
lg = ged (n, k)

On the other hand if we had |8 ("F)| = b < n/gcd (n, k) then we have e = (g8°d (mF))b =
gPeed (k) with bged (n, k) < n, contradicting |g| = n. Thus we have:

\gng (n,k)| — n
ged (n, k)
Thus we have: n
k| — |,gcd (n,k)‘ _
a ’g ged (n, k)

QED



()

Corollary: In a finite cyclic group the order of an element divides the order of a group.
Proof: Follows since every element looks like g* and we have |g¥|ged (n, k) =n. QED

Example: In a cyclic group of order 200 the order of every element must divide 200. In
such a group an element could not have order 17, for example.

Corollary: Suppose g € G and |g| = n < co. Then:
(a')y = (a’) iff ged (n,1) = ged(n, j) iff |a’| = |af|

Proof: Follows immediately. QED
Example: If |g| = 18 then the fact that ged (18,12) = 6 = ged (18, 6) guarantees that
92 = 19°].

Corollary: Suppose g € G and |g| =n < co. Then:
(a) = (a?) iff ged (n, j) = 1 iff |a| = |a?|

Proof: Follows immediately. QED
Example: If [g| = 32 then the fact that ged (15,32) = 1 guarantees that (g'*) = (g),
meaning ¢g'% is a generator of (g).

Corollary: An integer k € Z, is a generator of Z, iff ged (n, k) = 1.

Proof: Follows immediately. QED
Example: The generators of Zig are 1,3,7,9.



6. Classification of Subgroups of Cyclic Groups:

(a) Theorem (Fundamental Theorem of Cyclic Groups):

Suppose G = (g} is cyclic.

(i)
(i)
(iii)

Every subgroup of G is cyclic.
If |G| = n then the order of any subgroup of G divides n.

If |G| = n then for any k | n there is exactly one subgroup of order k and if g generates
G then g% generates that subgroup.

Proof:

(i)

(i)

(iii)

Let H < G. If H = {e} then we’re done so assume H # {e}. Choose ¢™ € H with
minimal m € Z% by well-ordering. Clearly (¢™) C H. If some ¢g¥ € H then put
k=gm+rwith0<r <msor=k—qgmand then g" = g¥(¢™) %€ Handsor =0
by minimality of m and so g¥ = (¢™)? and hence g* € (g™).

Take a subgroup H < G. We know H is cyclic by (i) with H = (¢™) with minimal
m € Z* by well-ordering. Write n = gm 47 with 0 < r < m so r = n — ¢gm and then
g" =g"(¢g™)"% € H and so r = 0 by minimality of m and so n = ¢gm and then

n n

|H| = [(¢")| = lg \:mza

and so m|H| =n and so |H| | n.
Observe first that for any k | n we have

() -

Thus certainly <g”/ k > is a subgroup of order k. We must show that it is unique.
Let H < G with |H| = k | n. Since H < G by (i) we have H = (¢™) with m | n.
Then we have:

0 R S "

ged (n,n/k)  n/k

n n
= |H| = m\| — | = 00—
k= H] = Kg™)l =g ged (n,m)  m
Thus m = n/k and so H = (¢") = <gn/k>.

QED

Example: This categorizes cyclic groups completely. For example suppose a cyclic group
has order 20. Every subgroup is cyclic and there are unique subgroups of each order
1,2,4,5,10,20. If G has generator g then generators of these subgroups can be chosen to

be g

20/1 — ¢20 420/2 _ 410 020/4 _ g5 ;20/5 _ g4 20/10 _ 2 ;20/20 _ g yespectively.

(b) Corollary: For each positive divisor k of n € Z*, the set (n/k) is the unique subgroup
of Z,, of order k. Moreover these are the only subgroups of Zj.
Proof: Follows immediately. QED
Example: In Z;o = (1) the subgroup (1) is the unique subgroup of order 10/1 = 10, the
subgroup (2) is the unique subgroup of order 10/2 = 5, the subgroup (5) is the unique
subgroup of order 10/1 = 2, the subgroup (10) = (0) is the unique subgroup of order
10/10 = 1.

(c) Definition: Define ¢(1) = 1 and for any n € Z with n > 1 define ¢(n) to be the number
of positive integers less than n and coprime to n.

Example: We have ¢(20) = 8 since 1,3,7,9,11,13,17,19 are coprime.



(d)

Theorem: Suppose G is cyclic of order n. If d | n then there are ¢(d) elements of order
d in G.

Proof: Every element of order d generates a cyclic subgroup of order d but there is only
one such cyclic subgroup, thus every element of order d is in that single cyclic subgroup
of order d. If that cyclic subgroup is (g) with |g| = d then note that the only elements of
order d in it are those g* with ged (d, k) = 1 and there are ¢(d) of those. QED
Example: In a cyclic group of order 100 noting that 20 | 100 we then know there are
¢(20) = 8 elements of order 20.

Theorem: If G is a finite group then the number of elements of order d is a multiple of

o(d).
Outline of Proof: Elements of order d can be collected ¢(d) at a time into subgroups
of order d. QED

Example: If G is an arbitrary finite group then the number of elements of order 20 is a
multiple of 8. Keep in mind that this might be zero!



